
Vocabulary-based Hashing for Image Search

Yingyu Liang Jianmin Li Bo Zhang
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University

liangyy08@mails.tsinghua.edu.cn {lijianmin,dcszb}@mail.tsinghua.edu.cn

ABSTRACT

This paper proposes a hash function family based on fea-
ture vocabularies and investigates the application in build-
ing indexes for image search. Each hash function is asso-
ciated with a set of feature points, i.e. a vocabulary, and
maps an input point to the ID of the nearest one in the
vocabulary. The function family can be employed to build
a high-dimensional index for approximate nearest neighbor
search. Then we concentrate on its application in image
search. Guiding rules for the construction of the vocab-
ularies are derived, which improve the effectiveness of the
approach in this context by taking advantage of the data
distribution. The rules are applied to design an algorithm
for vocabulary construction in practice. Experiments show
promising performance of the approach and the effective-
ness of the guiding rules. Comparison with the popular Eu-
clidean locality-sensitive hashing also shows the advantage
of our approach in image search.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Storage and
Retrieval; I.4.9 [Computing Methodologies]: Image Pro-
cessing and Computer Vision

General Terms

Algorithms, Design

Keywords

visual vocabulary, hashing index, image search

1. INTRODUCTION
High-dimensional nearest neighbor search indexes are es-

sential for various kinds of multimedia applications, where
the multimedia objects are represented as sets of elements,
and similarity between them is evaluated by searching near
neighbors for each element. Such applications include content-
based copy detection [6, 9] and song intersection [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’09, October 19–24, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-608-3/09/10 ...$10.00.

Similar image search is another typical such application.
Similar images are defined as images of the same object or
scene viewed under different imaging conditions [4]. Most
previous works involve search for similar local invariant fea-
ture points such as SIFT[7]. Various typical approximate
nearest neighbor search algorithms, for example [1, 3], show
high performance in relatively small datasets, but do not fit
in large scale scenes. The bag-of-features (BOF) method [10]
is introduced in this context. A set of feature points, called
visual words and usually generated by clustering the dataset,
forms a visual vocabulary. Each feature point is quantized
by mapping to the ID of the nearest word. The approach can
be interpreted as an approximate nearest neighbor search:
the space is partitioned into Voronoi cells, and points in the
same cell are treated as neighbors of each other.
Some recent works extends BOF[4, 8]. For example, [4] im-
proves BOF by adding to the points carefully designed bi-
nary signatures from Hamming embedding. Those points in
the same cell and within a Hamming distance threshold are
treated as neighbors. However, the time spent on comput-
ing Hamming distance of signitures grows linearly with the
size of the dataset. On the other hand, hashing schemes [3,
5, 11] can fetch points in buckets directly as neighbors, for
example, the popular Euclidean locality sensitive hashing
based on p-stable distributions (E2LSH)[3]. The problem is
E2LSH typically requires hundreds of bytes for each point,
which prevents it from usage in large scale datasets.
Inspired by the vocabulary methodology and hashing index
scheme and aiming to improve the defects, we propose a hash
function family based on feature vocabularies and investi-
gate the application in building indexes for image search.
Each hash function is associated with a vocabulary, and
maps an input point to the ID of the nearest one in the
vocabulary. The function family can be employed to build
a high-dimensional index for approximate nearest neighbor
search. Guiding rules for the construction of the vocabular-
ies are derived, which improve the effectiveness of the ap-
proach in the context of image search by taking advantage
of the data distribution. The rules are applied to design
an algorithm in practice. Although evaluated only in im-
age search, the scheme is suitable for general near neighbor
search in multimedia applications where the objects are rep-
resented as sets of elements.
This paper is organized as follows. The vocabulary-based
hashing index is described in Section 2. Section 3 presents
the experimental results and Section 4 provides some dis-
cussions. Section 5 concludes the paper.



2. VOCABULARY-BASED HASHING
In this section we first describe the hash function family

based on visual vocabularies and its application in building
an index. Guiding rules for constructing the vocabularies
in the context of image search are then discussed, and are
applied to design a practical algorithm.

2.1 Vocabulary-based Hash Functions
Denote a hash function family mapping a domain S into

U as H = {h : S → U}. The hash function family can be
interpreted as a randomized space partition approach, for
each h ∈ H partitions the space into Ci

h = {p : h(p) =
i}(i ∈ U). On the other hand, the bag-of-features approach
can be viewed as an approximate nearest neighbor search
method, for the space is partitioned into Voronoi cells and
points in the same cell are treated as neighbors of each other.
So it is natural to use vocabularies to define hash functions.
Formally, A hash function h ∈ H is defined as

h(q) = argmin
0≤i<t

D(q, wi
h), wi

h ∈ Vh

where

Vh = {wi
h, 0 ≤ i < t}

is a vocabulary associated with h, t is the size of the vocab-
ulary and D(q, w) is the distance between points q and w.
Note that the functions are specific to the distance measure
used. As the Euclidean distance is widely used in applica-
tions, we focus on this case of special interest.
Here we describe the hashing index scheme using a given
function family [3]. First the discriminant power is ampli-
fied by concatenating several functions. In particular, given
a parameter k, define a function family G = {g : S → Uk}
such that g(p) = (h1(p), . . . , hk(p)), where hi ∈ H. Then
for a given parameter L, choose L functions g1, . . . , gL from
G independently and uniformly at random. During the con-
struction of the index, each data point p is stored in the
buckets gj(p), for j = 1, . . . , L. To find neighbors for a query
point q, search all buckets g1(q), . . . , gL(q) and return all the
points encountered. Thus, the functions g1, . . . , gL define a
hashing index and different hashing function family H leads
to different index. For example, E2LSH employs locality-
sensitive hashing functions based on 2-stable distributions1.
Our vocabulary-based hashing index is constructed by em-
ploying the vocabulary-based hash functions. Obviously, the
vocabulary construction plays a key role for the performance
of the index, which is discussed in following subsections. For
simplicity, we call Vg = (Vh1

, . . . , Vhk
) a vocabulary associ-

ated with g = (h1, . . . , hk) and let V = (Vg1
, . . . , VgL

).

2.2 Guiding Rules for Vocabulary Construc-
tion

In the context of image search, the approximate near-
est neighbors retrieved are used for computing image-level
similarity, typically used to perform a voting on images
in the dataset[10, 4]. In order to produce best search re-
sults, a high-quality search index should return ground truth
points and filter noise points with high probability at the
same time. Therefore, the quality of an approximate near-
est neighbor search index can be measured in the following

1Instead of all points in the buckets, only those within a
distance threshold are returned by E2LSH.

two criteria: 1) the average recall for the ground truth neigh-
bors and 2) the average rate of points that are filtered in the
dataset [4]. Aiming to improve these criteria for fixed k and
L, we discuss some guiding rules which provide useful hints
for constructing the vocabulary V .
If g(q) returns too much points for a query q, the filtering
rate of the search can not be improved in the following step.
Therefore, a greedy strategy is adopted: we first seek to
maximize filtering rate for each g and then maximize recall
for the union of all the buckets gi(1 ≤ i ≤ L).
Denote the dataset as P and N = #P , N(i) = #{p : g(p) =
i, p ∈ P}. Here we assume that the query shares the same
distribution with the dataset, which leads to Pr[g(q) = i] ≈
N(i)

N
. The filtering rate of g for a query q is defined as

Rf = 1 − N(g(q))
N

. It is expected to be

E
ˆ
Rf

˜
= 1 −

X

i∈U

Pr[g(q) = i]
N(i)

N

≈ 1 −
X

i∈U

„
N(i)

N

«2

.

Now consider maximizing recall for the union of all the
buckets gi(1 ≤ i ≤ L). The recall is relevant to the dis-
tribution of the ground truth neighbors, which is compli-
cated. We simplify the analysis by turning to maximize the
expected number of distinct points in the buckets. This
makes sense since points in the buckets are near neighbors,
i.e. candidate ground truth neighbors for the query. Let
Ns

i = #{p : gs(p) = i, p ∈ P} and Ns,t
i,j = #{p : gs(p) =

i, gt(p) = j, p ∈ P}. Let L = 2 for illustration. The number
Nr of distinct points in the buckets is expected to be

E
ˆ
Nr

˜
=

X

i∈Uk

X

j∈Uk

Pr[h1(q) = i, h2(q) = j]
`
N1

i + N2
j − N1,2

i,j

´

=
X

i∈Uk

Pr[h1(q) = i]N1
i

+
X

j∈Uk

Pr[h2(q) = j]N2
j

−
X

i∈Uk

X

j∈Uk

Pr[h1(q) = i, h2(q) = j]N1,2
i,j

≈
1

N

» X

i∈Uk

`
N1

i

´2
+

X

j∈Uk

`
N2

j

´2
−

X

i∈Uk

X

j∈Uk

`
N1,2

i,j

´2

–
.

A similar analysis can be applied to L > 2, but the result
is more awkward. By cutting the tail terms which are com-
paratively negligible, the expression is simplified to

E
ˆ
Nr

˜
≈

1

N

LX

s=1

X

i∈Uk

`
Ns

i

´2

−
1

N

X

s6=t,1≤s,t≤L

X

i,j∈Uk

`
Ns,t

i,j

´2
.

2.3 Vocabulary Construction
Here we apply the guiding rules to design a preliminary

algorithm, and then turn it into a more practical one. The
algorithm is described as follows: P is the dataset, t, k and
L are parameters of the index, C is a parameter indicating
the number of repetitions.



Subprocedure: ConstructVg(P , t, k, C)

1 Compute the mean m of P and its bounding box, i.e.
minimum and maximum value in each dimension

2 For i = 1 to C, j = 1 to k
Draw t random points pi

j,s(0 ≤ s < t) within the
bounding box of P uniformly and randomly

3 Centralize to wi
j,s = pi

j,s −
1
t

Pt−1
s=0 pi

j,s + m

4 Let V i
hj

= {wi
j,s}, V

i
g = (V i

h1
, . . . , V i

hk
)

5 Return V i
g that maximizes E

ˆ
Rf

˜

Procedure: ConstructVocabulary(P , t, k, L, C)

1 For i = 1 to C, j = 1 to L
V i

gj
= ConstructVg(P , t, k, C)

2 Let V i = (V i
g1

, . . . , V i
gL

)

3 Return V i that maximizes E
ˆ
Nr

˜

When the vocabulary is large, constructing the vocabular-
ies and computing the hash functions are time-consuming.
We adopt a hierarchical approach: the dataset is partitioned
into t1 subsets and vocabulary construction is performed for
each subset. More specifically, during the vocabulary con-
struction step, the dataset P is first clustered into t1 points,

which form the first level vocabulary bV = { bwi, 0 ≤ i < t1}

for all h ∈ H. Then we hash points on bV and each bucket
forms a subset Pi. The algorithm ConstructVocabulary

uses each Pi as input dataset to construct vocabularies Vi =
(Vi,g1

, . . . , Vi,gL
), Vi,g = (Vi,h1

, . . . , Vi,hk
), Vi,h = {ws

i,h, 0 ≤
s < t2}, which form the second level. During the search step,

we hash the query point on bV , find which Pi it falls in, and
use Vi to find its approximate nearest neighbors. Equiva-
lently, each h ∈ H is associated with a two-level vocabulary
tree, as show in Figure 1(t1 = 3, t2 = 2 for illustration).
Note the guiding rules are applied locally in Pi. Still, ex-
periments presented later show the effectiveness.

1
ŵ

2
ŵ0

ŵ

0

,0 h
w

1

,0 h
w

0

,1 h
w 1

,1 h
w

0

,2 hw
1

,2 hw

Figure 1: The vocabulary tree for h ∈ H

3. EXPERIMENTS
Settings. We perform our experiments on the Holidays

and F lickr60k datasets from [4]. The Holidays contains
4.456M points extracted from 1491 images, divided into 500
groups, each consisting of one query and its ground truth for
evaluation. To show more accurately the behavior in large
scale datasets the vocabularies are constructed on a distinct

Table 1: Performance
Method Parameters perf@100 perf@5
BOF [4] 0.673

HE+WGC [4] 0.855
VBH t2 = 2, k = 4, L = 4 0.804 0.634
VBH t2 = 2, k = 4, L = 8 0.814 0.633
VBH t2 = 2, k = 8, L = 8 0.843 0.719
VBH t2 = 2, k = 8, L = 16 0.860 0.731
VBH t2 = 2, k = 8, L = 32 0.863 0.739
VBH t2 = 3, k = 6, L = 16 0.858 0.712
VBH t2 = 3, k = 6, L = 32 0.869 0.712
VBH t2 = 4, k = 4, L = 32 0.856 0.694

no rules t2 = 2, k = 8, L = 16 0.798 0.585
no rules t2 = 2, k = 8, L = 32 0.799 0.580

dataset F lickr60k. The index is built as follows: for each
gi, keep a table with t1t

k
2 buckets, and put points into cor-

responding buckets. Since in image search the neighbors
retrieved are used for voting, we only keep the identity of
the image that the feature point comes from.
Performance measure. To evaluate the performance of
the index, we focus on its contribution to the image search
result. Voting is performed with our implementation of the
approach in [4]. There is usually a post-verification step
of the top n positions in practice, using the geometry of
the matched feature points, especially in large scale scenes
where the voting results need further refinements. So rate
of true positives returned in the top n positions after voting
(perf@n) serves as a suitable performance measure [8, 4] and
is adopted for our evaluation.
Results. The results for different settings of parameters are
presented in Table 1. BOF (bag-of-feature) and HE+WGC
(Hamming embedding + weak geometrical consistency) both
use a vocabulary of 200000 words; HE+WCG adds 75 bit
binary signature to each point. Their results are from [4].
In our VBH (vocabulary-based hashing) approach, the vo-
cabularies are constructed with C = 10 and t1 = 20000.
A set of small parameters such as t2 = 2, k = 4, L = 4, re-
sults in a significant improvement over BOF. This indicates
the effectiveness of our index scheme. A reasonable set of
parameters such as t2 = 2, k = 8, L = 16, produces better
result than HE+WGC and removes the time growing lin-
early with the size of the dataset. And better performance
is observed when larger k, L used. Larger t2 produces simi-
lar results when the bucket number tk

2 is similar, so we focus
on t2 = 2. Comparison between perf@100 and perf@5 shows
the ground truth images mainly rank in top positions.
Experiments are also performed to verify the effectiveness
of the guiding rules, using random vocabularies with words
drawn from the bounding box of the dataset uniformly and
independently at random. The results are presented in the
rows “no rules”. The results produced by using the same
parameters and trained vocabularies are significant better
than those by using random vocabularies. This suggests
the guiding rules and the subsequent algorithm indeed make
contribution to the improvement of the performance.
Comparison with E2LSH. Figure 2 presents compari-
son with E2LSH. For E2LSH occupies a significant amount
of memory, the experiments are performed on subsets of
Holidays, each consisting 100 groups. And as tf-idf is not
defined in E2LSH scheme, it is not used in the voting step



0.4

0.6

0.8

1
Pe

rf@
10

0

0

0.2

0.4

subset1 subset2 subset3 subset4 subset5
VBH E2LSH_default E2LSH_k8_L21

Figure 2: Comparison with E2LSH

of the comparison, i.e. we vote without the tf-idf weighting
term. For VBH, t2 = 2, k = 8, L = 16. For E2LSH default,
k = 14, L = 105 is automatically computed by E2LSH; for
E2LSH k8 L21, we manually designate k = 8, L = 21 sim-
ilar to VBH for comparison. For both E2LSH settings, we
choose the neighbor distance threshold that produces best
results and use default values for the other parameters. It is
observed that VBH outperforms both E2LSH settings. We
attribute this to the fact that VBH makes exploration of
the data distribution and is specifically improved for image
search by the guiding rules.

4. DISCUSSIONS
As described in the settings, the index keeps only iden-

tities of images, so each point requires 4L bytes, about 5
times compared to Hamming embedding (12 bytes), and sig-
nificantly less than E2LSH (the point itself and 12L bytes).

The search time consists of two parts: hashing on bV needs
O(t1) if brute-force search is adopted; hashing on Vi needs
O(t2kL). So with fixed vocabulary, the time remains con-
stant, which is a desired quality for large scale datasets. For
a vocabulary of t words and b bit signature, the search time
of Hamming embedding consists of three parts: hashing on
the vocabulary needs the same O(t) as our approach; em-
bedding needs O(b); computing Hamming distance needs ap-
proximately O(n/t), growing linearly with the dataset size.
For fixed table size t E2LSH also consumes linearly growing
time O(nL/t) since it computes distances between the query
and points in the corresponding buckets.
Additionally, the vocabulary-based hashing can be paral-
lelized naturally for the tables work in parallel. The paral-
lelized version of the index is illustrated in Figure 3(L = 2).
The query is sent to each table and further forwarded to
the corresponding bucket. Points in those buckets are then
returned. The second part of the search time is reduced to
O(t2k). This should be a significant advantage over many
other indexes, such as Hamming embedding. And although
our index occupies more space as a whole, each table can
hold more points than Hamming embedding, thus the index
can deal with larger datasets after parallelization.

5. CONCLUSION
This paper has introduced a hash function family based on

feature vocabularies and employed the functions to build an
approximate nearest neighbor search index. Guiding rules
for vocabulary construction have been derived to improve
the effectiveness of the approach in the context of image

Query

1g

2g

...

...

...

...

Figure 3: Parallelized vocabulary-based hashing

search. Experiments show promising performance of the ap-
proach and the effectiveness of the guiding rules.
The approach shows desired qualities for large scale appli-
cations, so for future study, we plan to evaluate it on large
scale datasets, especially the parallelized version.

6. ACKNOWLEDGMENTS
This work was supported by the National Natural Sci-

ence Foundation of China under the grant No. 60621062
and 60605003, the National Key Foundation R&D Projects
under the grant No. 2003CB317007, 2004CB318108 and
2007CB311003. The authors would like to thank Herve Je-
gou for providing the Holidays and F lickr60k datasets, and
thank Alexandr Andoni for providing the E2LSH code.

7. REFERENCES
[1] S. Arya, D. M. Mount, N. S. Netanyahu,

R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching fixed
dimensions. J. ACM, 1998.

[2] M. Casey and M. Slaney. Song intersection by
approximate nearest neighbour search. In ISMIR,
2006.

[3] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, 2004.

[4] H. Jegou, M. Douze, and C. Schmid. Hamming
embedding and weak geometric consistency for large
scale image search. In ECCV, 2008.

[5] A. Joly and O. Buisson. A posteriori multi-probe
locality sensitive hashing. In MM, 2008.

[6] Y. Ke, R. Sukthankar, and L. Huston. Efficient
near-duplicate detection and sub-image retrieval. In
MM, 2004.

[7] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. IJCV, 2004.

[8] D. Nister and H. Stewenius. Scalable recognition with
a vocabulary tree. In CVPR, 2006.

[9] S. Poullot, O. Buisson, and M. Crucianu. Z-grid-based
probabilistic retrieval for scaling up content-based
copy detection. In CIVR, 2007.

[10] J. Sivic and A. Zisserman. Video Google: A text
retrieval approach to object matching in videos. In
ICCV, 2003.

[11] H. Yang, Q. Wang, and Z. He. Randomized
sub-vectors hashing for high-dimensional image
feature matching. In MM, 2008.


